专业定制伺服电动缸的电动缸厂家

咨询热线:13905180521
杏彩体育官网入口

杏彩体育官网入口网址·长文综述:大脑中的熵、自由能、对称性和动力学|新春

来源:杏彩体育官网网址 作者:杏彩体育官网入口2024-05-21 11:19:42
杏彩体育官网入口网址·

  我们的大脑在一定程度上是贝叶斯推理系统,生成内部模型对外部世界作出预测,然后将预测与感官输入不断地进行对比,形成预测误差并更新内部模型。2022年初发表于跨学科期刊 Journal of Physics: Complexity 的一项研究提出一种神经机制——大脑从脑网络连接的对称性破缺中生成内部模型。涌现的观点说明了自由能如何与内部模型联系起来,以及如何由神经底层中产生。研究关注在信息论框架内整合确定性过程和随机性过程,从而将信息熵和自由能与脑网络中的涌现动力学机制和自组织机制联系起来。

  人类大脑是由数以百亿计的神经元相互连接所构成的复杂系统,吸引来自不同领域的无数科学家从不同尺度探究其中奥秘——从解析神经元之间的相互作用机理,到刻画皮层柱之间的连接形式,再到探究脑区间不同认知功能的分离与整合模式,以期揭示人脑这一最为复杂的神经系统的工作模式,理解语言、学习、社会交往等高级认知活动的底层神经机制,并有望启发通用人工智能机器人的设计。为探讨认知、智能、意识等根本性问题,集智俱乐部组织了「」、「」、「」等系列主题读书会,并将在春节后开启「自由能原理与强化学习」读书会和更多活动探讨意识的量化与建模问题,探索神经科学、系统科学、生物学、物理学与人工智能如何相互启发,欢迎感兴趣的朋友持续关注。

  研究领域:脑网络,对称性破缺,神经动力学,信息熵,热力学,贝叶斯大脑,自由能原理,自组织,涌现

  摘要:神经科学是根植于各种领域的概念及理论的家园,包括信息论、动力系统理论和认知心理学。但并非所有的领域都可以连贯地联系起来,有些概念是不可通约的,而且特定领域的术语给整合带来障碍。尽管如此,概念整合仍然是提供直觉和巩固的理解形式,没有概念整合,进展将是无头苍蝇。本文关注在信息论框架内整合确定性过程和随机性过程,从而将信息熵和自由能与脑网络中的涌现动力学机制和自组织机制联系起来。我们确定了神经元群 (neuronal populations) 的基本属性,该属性导致等变矩阵出现在网络中,而在该网络中,复杂行为可以通过流形上的结构化流来表示,从而建立与脑功能理论相关的内部模型。我们提出一种从脑网络连接的对称性破缺中生产内部模型的神经机制。涌现的观点说明了自由能如何与内部模型联系起来,以及它们如何由神经底层中产生。

  预测编码(Predictive coding) 是当代最具影响力的脑功能理论之一[1-3]。该理论基于大脑作为贝叶斯推理系统运行这一直觉,如此实现内部生成模型对外部世界的预测。这些预测不断地与感官输入进行对比,形成预测误差并更新内部模型 (见图1) 。从理论的角度来看,用预测编码的形式表示脑功能是如此迷人,因为这解决了不同领域过多的深奥概念。这样便有机会将抽象概念联系进一个整合框架内,这些抽象概念如动力学、确定性作用和随机性作用、涌现、自组织[4-6]、信息、熵、自由能[7,8]、稳态等等。该跨领域的整合符合对这些复杂抽象概念的直观理解,尽管通常为保留易处理性,对于给定概念的所有复杂性层面没有全部被等价地刻画。例如,在预测编码理论中使用简单的内部模型 (如在做决策时,动力学被简化为转换) ,但是简单的模型很难推广到更复杂的行为。当焦点在过程的推理部分时,这种做法理所当然,而我们不希望这样做。实际上我们强调内部模型在大脑激活方面的神经基础以及要与复杂行为涌现的理论相联系。不过,考虑到信息论概念 (尤其是熵和自由能) 的重要性,在预测编码方面,这样的尝试要求它们与当代脑网络模型中存在的概率分布函数和相关的确定性作用和随机性作用进行整合 (相关观点同见[9-11]) 。

  图1:贝叶斯大脑假说(Bayesian brain hypothesis)的推理过程图示。图左侧的生成模型表现为内部神经动力学,通过感知和行动(图右侧)与外部世界进行信息交换来实现模型更新。

  Karl Friston首次提出把自由能作为大脑功能的一个原则[12-14],从数学上阐述了自适应、自组织系统如何抵抗自然的 (热力学的) 无序倾向。随着时间推移,自由能原理已经从赫姆霍兹机 (Helmholtz machine) 中使用的自由能概念里发展出来,在预测编码背景下用来解释大脑皮层反应,并逐渐发展为智能体的一般原则,这也被称为主动推理(Active Inference)[15]。贝叶斯推理过程和最大信息原理(maximum information principle)两者实际上都可重新阐述为自由能最小化问题。尽管这些关于自由能的概念在两个相关的框架中都有使用,但它们并不完全等价。模棱两可或因为这样的事实,即它们的一般形式类似于热力学亥姆霍兹自由能 (Helmholtz free energy) ,但是却来自于两种不同的推理路线]) 。第一个是所谓的“来自约束的自由能”,对应于最大信息原理下最小化的自由能,表示确定性约束和随机作用之间的权衡[7]。我们主要考虑的便是这种类型的自由能及其约束。另一个是变分自由能 (variational free energy) 并与贝叶斯大脑假说有关。这种自由能概念源于对贝叶斯规则的重新表述,即表述为寻找最小化相对熵 (KL-散度) 的概率分布这一优化问题,其中相对熵表示偏离精确贝叶斯后验的误差。

  确定约束在流形上的结构化流(structured flows on manifolds, SFMs) [16,17]框架中以动力学的形式表示,其中结构化流属于网络中产生的低维动力系统,因此是大脑理论中表示内部模型的主要候选者。通过概率分布的介导,经验可得的函数 (如放电率、能量、方差等等) 上的相关性都含有自由能和SFMs两者之间的联系,其中,概率分布在系统中确定性和随机性作用的相互作用下形成。Ilya Prigogine 在阐述熵的含义时,详细说明了这些作用之间的紧密联系。在这里,时间 (的概念) 超越了重复和退化的概念,达到建设性的不可逆性概念,如生命系统所表现的那样,通过与其所处的环境进行熵的交换来永存自己。生物学被认为需要将不可逆的时间刻在物质之上。在神经科学的背景下,这让我们想起Ingvar的假定,即大脑有能力通过其时间极化结构模拟“将来的记忆”[20],以及大脑能维持和导航分布在不同脑区的过去、现在和将来的经验。

  尽管熵的数学公式最先出现在经典热力学 (涉及诸如热、温度和能量交换等宏观量) 的背景下,之后的统计力学将熵表示为系统处于不同可能微观状态的概率对数函数。后者的函数形式与香农信息熵相同,其中,香农信息熵表达式中的概率是变量的不同可能取值的概率 (见2.2节) 。如 Edwin T Jaynes 在1957年所说那样,在更深层次上,作为用概率分布表示的不确定性度量,这两种熵的概念紧密联系;在两种情况下,都被视为受观测量约束的概率分布的预测问题,其中具有最大熵的概率分布是唯一的无偏选择[7]。

  上述关于熵含义的简短论述,在 Hermann Haken 建立的协同学 (synergetics) 中找到一个理论框架,该框架正式集成了远离平衡系统 (far-from-equilibrium systems) 中耗散结构 (dissipative structures) 涌现的数学形式。非线性和不稳定性导致涌现和复杂性机制的产生,而熵和涨落导致不可逆性和不可预测性。这种动力学的本质自然会引出概率概念,弥补了我们无法精确刻画出系统的独特轨迹。协同学一直是将这些原则推及领域的驱动力,尤其是生命科学和神经科学。理清确定性和随机性影响的二元性并详述其如何在大脑中产生,将会为我们的愿景创造舞台。因此,本文的目标便是解开后面这些复杂的关系,从而统一看似无关的大脑动力学模型框架。

  考虑到这些概念的互补性,且为方便来自不同背景的对宏观大脑动力学建模感兴趣的读者,我们先退一步,回顾一些概率论和信息论相关的基本概念。

  Edwin T Jaynes强调,信息论的重大概念进步在于有一个明确的量,即利用概率分布来表示不确定性数量的信息熵,直观反映了宽分布比尖峰分布代表更多的不确定性,同时也满足与该直觉一致的所有条件[7]。在无任何信息的情况下,对应的概率分布完全无信息而且熵信息消失。在有一些确定性约束的情况下,如物理观测量均值的测量值,利用第一类拉格朗日方程 (Lagranges theory of first kind) ,我们可以求解该约束下对应的最大化信息熵 (等效于最小化自由能[7,12]) 的概率分布。在这个意义上,对熵的考量优先于对确定性影响的讨论,而且断定应符合最大熵分布,该断定基于这样一个事实,即最大熵分布符合所有确定性影响的结果,但除此之外,对像缺失信息这样的影响不置可否。当以熵作为主要概念时,自由能、概率分布函数和SFMs等相关量之间的关系就自然建立起来。这些关系在现实世界通过相关性表达它们自己,在物理层面上通过测量系统状态变量的函数也是可得的,而且原则上允许对系统所有参数进行系统估计。

  第一个方程建立了贝叶斯定理的简化形式,以概率分布函数p进行表示,其中p(x,y)是状态变量x和y的联合概率,p(yx)是给定变量x状态的条件下变量y的条件概率。在贝叶斯框架中,参数和状态变量在一定意义上具有相似地位,即它们都可以用分布进行描述并且以参数的形式进入概率函数p中。例如,给定参数k,状态x和y的联合概率可被写为p(x,yk),确定了给定一组参数值k的条件下,获得一组数据 (x,y)的可能性,其中k的先验分布为p(k)。先验代表我们对模型和初始值的了解。

  第二个方程,朗之万方程 (技术上存在更精确的微积分形式可以在例如[4]中找到,此处假设是伊藤微积分) 确定了生成模型,其中神经源层面的大脑活动由N维状态向量 Q=(x,y,...)∈RN 表示,f(Q,k)代表确定性影响,表示成基于状态Q和参数k(或一组参数{k})的M维流向量f。v∈RN确定了涨落影响,通常假设为 i(t)vj(t)=cδijδ(t-t) 的高斯白噪声,其中δij是 Kronecker-delta 函数,δ(t-t)是Dirac函数。噪声影响 (包括乘性噪声或有色噪声) 可能有更一般的公式,请读者自行查阅相关文献。

  第三个方程确立了观测模型,通过前向模型h(Q)和测量噪声w将源活动Q(t)与实验获取的传感器信号Z(t)联系起来。对于脑电图测量,h是Maxwell方程确定的增益矩阵;对于功能磁共振成像测。